62,165 research outputs found

    Correlation of the orbach relaxation coefficient with optical linewidths- laf3-er3 plus

    Get PDF
    Correlation of Orbach coefficient of spin-lattice relaxation with optical transition linewidths for trivalent erbium in lanthanum fluorid

    Corner and finger formation in Hele--Shaw flow with kinetic undercooling regularisation

    Get PDF
    We examine the effect of a kinetic undercooling condition on the evolution of a free boundary in Hele--Shaw flow, in both bubble and channel geometries. We present analytical and numerical evidence that the bubble boundary is unstable and may develop one or more corners in finite time, for both expansion and contraction cases. This loss of regularity is interesting because it occurs regardless of whether the less viscous fluid is displacing the more viscous fluid, or vice versa. We show that small contracting bubbles are described to leading order by a well-studied geometric flow rule. Exact solutions to this asymptotic problem continue past the corner formation until the bubble contracts to a point as a slit in the limit. Lastly, we consider the evolving boundary with kinetic undercooling in a Saffman--Taylor channel geometry. The boundary may either form corners in finite time, or evolve to a single long finger travelling at constant speed, depending on the strength of kinetic undercooling. We demonstrate these two different behaviours numerically. For the travelling finger, we present results of a numerical solution method similar to that used to demonstrate the selection of discrete fingers by surface tension. With kinetic undercooling, a continuum of corner-free travelling fingers exists for any finger width above a critical value, which goes to zero as the kinetic undercooling vanishes. We have not been able to compute the discrete family of analytic solutions, predicted by previous asymptotic analysis, because the numerical scheme cannot distinguish between solutions characterised by analytic fingers and those which are corner-free but non-analytic

    Process techniques study of integrated circuits Final scientific report

    Get PDF
    Surface impurity and structural defect analysis on thermally grown silicon oxide integrated circui

    NMR Probing Spin Excitations in the Ring-Like Structure of a Two-Subband System

    Full text link
    Resistively detected nuclear magnetic resonance (NMR) is observed inside the ring-like structure, with a quantized Hall conductance of 6e^2/h, in the phase diagram of a two subband electron system. The NMR signal persists up to 400 mK and is absent in other states with the same quantized Hall conductance. The nuclear spin-lattice relaxation time, T1, is found to decrease rapidly towards the ring center. These observations are consistent with the assertion of the ring-like region being a ferromagnetic state that is accompanied by collective spin excitations.Comment: 4 pages, 4 figure

    Numerical investigation of controlling interfacial instabilities in non-standard Hele-Shaw configurations

    Full text link
    Viscous fingering experiments in Hele-Shaw cells lead to striking pattern formations which have been the subject of intense focus among the physics and applied mathematics community for many years. In recent times, much attention has been devoted to devising strategies for controlling such patterns and reducing the growth of the interfacial fingers. We continue this research by reporting on numerical simulations, based on the level set method, of a generalised Hele-Shaw model for which the geometry of the Hele-Shaw cell is altered. First, we investigate how imposing constant and time-dependent injection rates in a Hele-Shaw cell that is either standard, tapered or rotating can be used to reduce the development of viscous fingering when an inviscid fluid is injected into a viscous fluid over a finite time period. We perform a series of numerical experiments comparing the effectiveness of each strategy to determine how these non-standard Hele-Shaw configurations influence the morphological features of the inviscid-viscous fluid interface. Tapering plates in either converging or diverging directions leads to reduced metrics of viscous fingering at the final time when compared to the standard parallel configuration, especially with carefully chosen injection rates; for the rotating plate case, the effect is even more dramatic, with sufficiently large rotation rates completely stabilising the interface. Next, we illustrate how the number of non-splitting fingers can be controlled by injecting the inviscid fluid at a time-dependent rate while increasing the gap between the plates. Simulations compare well with previous experimental results for various injection rates and geometric configurations. Further, we demonstrate how the fully nonlinear dynamics of the problem affect the number of fingers that emerge and how well this number agrees with predictions from linear stability analysis

    Incoherence of Bose-Einstein condensates at supersonic speeds due to quantum noise

    Full text link
    We calculate the effect of quantum noise in supersonic transport of Bose-Einstein condensates. When an obstacle obstructs the flow of atoms, quantum fluctuations cause atoms to be scattered incoherently into random directions. This suppresses the propagation of Cherenkov radiation, creating quantum turbulence and a crescent of incoherent atoms around the obstacle. We observe similar dynamics if the BEC is stirred by a laser beam: crescents of incoherent atoms are emitted from the laser's turning-points. Finally, we investigate supersonic flow through a disordered potential, and find that the quantum fluctuations generate an accumulation of incoherent atoms as the condensate enters the disorder.Comment: 6 pages, 5 figure

    Fluctuations in Student Understanding of Newton's 3rd Law

    Full text link
    We present data from a between-student study on student response to questions on Newton's Third Law given throughout the academic year. The study, conducted at Rochester Institute of Technology, involved students from the first and third of a three-quarter sequence. Construction of a response curve reveals subtle dynamics in student learning not captured by simple pre/post testing. We find a a significant positive effect from direct instruction, peaking at the end of instruction on forces, that diminishes by the end of the quarter. Two quarters later, in physics III, a significant dip in correct response occurs when instruction changes from the vector quantities of electric forces and fields to the scalar quantity of electric potential. Student response rebounds to its initial values, however, once instruction returns to the vector-based topics involving magnetic fields.Comment: Proceedings of the 2010 Physics Education Research Conferenc
    corecore